Evolution and Global Warming are facts, not theories!

Hand Evolution by Megan Godtland

Science and Reason, use them to guide your life.

Microwave Earth by Megan Godtland

Scientists Stats

Sioux Falls Scientists endorse Restless Planet for describing some
of the foundamental forces that have shaped our planet.

Restless Planet

Restless Planet (2005) - 275 minutes
Restless Planet at Amazon.com

Experience the devastating power of explosive volcanoes, ground-buckling earthquakes, deadly tornadoes, hurricanes and tsunamis as National Geographic heads into the field with scientists who risk their lives to study these fearsome natural phenomena. Featuring over five hours of programming, Restless Planet captures extraordinary scenes of destruction from the air, the ground and from inside a tornado and the moving, human side of the story from tales of heroism and tragedy to dedicated teams of experts racing to understand and ultimately better predict the deadly forces of nature.

Restless Planet includes:

  • Disk 1: Volcano: Nature's Inferno
  • Disk 2: Tsunami: Killer Wave
  • Disk 3: Tornado Intercept
  • Disk 4: Nature's Fury
  • Disk 5: Storm of the Century

1-15-18 Mount Etna may not really be a ‘proper’ volcano at all
Italy’s famous volcano Mount Etna may be fed mostly by hot water and carbon dioxide, with only a small dose of molten rock to make it resemble a classic volcano. Mount Etna, one of the world’s most famous volcanoes, may be misunderstood. According to one geologist, the material feeding the cone is mostly water, so Etna is effectively a giant hot spring. But other geologists are unconvinced. Mount Etna in Italy is almost constantly active. It’s been estimated that it spewed about 70 million tonnes of lava in 2011 alone. But what really puzzles Carmelo Ferlito at the University of Catania, Italy – about 30 kilometres from the volcano – is that Etna also belches out more than 7 million tonnes of steam, carbon dioxide and sulphur dioxide every year. The conventional explanation is that this gas bubbles out of magma as it loses pressure on its way up through the volcano’s vent. But Ferlito says Etna would need to erupt ten times more lava than it does to account for all the gas that burps out. Alternatively, maybe most of the molten rock in Etna loses its gas and sinks again, without erupting. But Ferlito’s calculations suggest that sustaining the gas emissions would require a fresh injection of 10,000 kilograms of magma every single second. This would “inflate the volcano like a children’s balloon”, he says. So instead, Ferlito argues the easiest way to explain Etna’s excess gas is to ditch the idea that it is fed only by magma. He has calculated that the volcano’s deep plumbing system could hold lots of water, carbon dioxide and sulphur, collectively making up about 70 per cent of the volume of material feeding the volcano. “Only 30 per cent is molten rock,” he says.

9-3-17 North America’s largest recorded earthquake helped confirm plate tectonics
North America’s largest recorded earthquake helped confirm plate tectonics
‘The Great Quake’ tells the story of the 1964 Alaska temblor. In 1964, the largest recorded earthquake in North American history shook Alaska to its core (damage in Anchorage, shown) and provided proof of tectonic plate movement. In the early evening of March 27, 1964, a magnitude 9.2 earthquake roiled Alaska. For nearly five minutes, the ground shuddered violently in what was, and still is, the second biggest temblor in recorded history. Across the southern part of the state, land cracked and split, lifting some areas nearly 12 meters — about as high as a telephone pole — in an instant. Deep, house-swallowing maws opened up. Near the coast, ground turned jellylike and slid into bays, dooming almost everyone standing on it. Local tsunamis swamped towns and villages. Not many people lived in the newly formed state at the time. If the quake had struck in a more developed place, the damage and death toll would have been far greater. As it was, more than 130 people were killed. In The Great Quake, Henry Fountain, a science journalist at the New York Times, tells a vivid tale of this natural drama through the eyes of the people who experienced the earthquake and the scientist who unearthed its secrets. The result is an engrossing story of ruin and revelation — one that ultimately shows how the 1964 quake provided some of the earliest supporting evidence for the theory of plate tectonics, then a disputed idea.

8-15-17 Seismologists get to the bottom of how deep Earth’s continents go
Seismologists get to the bottom of how deep Earth’s continents go
Analysis of seismic waves finds runny rock layer where landmass ends. Earthquake vibrations are revealing just how deep the continents beneath our feet go. Researchers analyzed seismic waves from earthquakes that have rocked various regions throughout the world, including the Americas, Antarctica and Africa. In almost every place, patterns in these waves indicated a layer of partially melted material between 130 and 190 kilometers underground. That boundary marks the bottom of continental plates, argue Saikiran Tharimena, a seismologist at the University of Southampton in England, and colleagues. Their finding, reported in the Aug. 11 Science, may help resolve a longtime debate over the thickness of Earth’s landmasses. Estimating continental depth “has been an issue that’s plagued scientists for quite a while,” says Tim Stern, a geophysicist at Victoria University of Wellington in New Zealand, who wasn’t involved in the work. Rock fragments belched up by volcanic eruptions suggest that the rigid rock of the continents extends about 175 kilometers underground, where it sits atop slightly runnier material in Earth’s mantle. But analyses of earthquake vibrations along Earth’s surface have suggested that continents could run 200 or 300 kilometers deep, very gradually transitioning from cold, hard rock to hotter, gooier material.

1-4-17 Molten iron river discovered speeding beneath Russia and Canada
Molten iron river discovered speeding beneath Russia and Canada
DEEP below our planet’s surface, a molten jet of iron, nearly as hot as the surface of the sun, is picking up speed. This stream of liquid some 420 kilometres wide has been discovered by telltale magnetic field readings 3000 kilometres below North America and Russia. It has trebled in speed since 2000, and is now circulating westwards at between 40 and 45 kilometres per year, heading from deep under Siberia towards the underside of Europe (see diagram). That is three times as fast as the typical speeds of liquid in the outer core. No one knows yet why the jet has got faster, but the team that made the discovery thinks it is a natural phenomenon, and can help us understand the formation of Earth’s magnetic fields, which keep us safe from solar winds. “It’s a remarkable discovery,” says Phil Livermore at the University of Leeds, UK, who led the team. “We’ve known that the liquid core is moving around, but our observations haven’t been sufficient until now to see this jet.” “We know more about the sun than the Earth’s core,” says team member Chris Finlay from the Technical University of Denmark in Kongens Lyngby. “The discovery of this jet is an exciting step in learning more about our planet’s inner workings.” What made the discovery possible was the combined monitoring power of the European Space Agency’s trio of satellites, called Swarm, which were launched in 2013. From orbit, they can measure magnetic field variations down to 3000 kilometres below Earth’s surface, where the molten core meets the solid mantle.

1-3-17 'Better estimate' of volcanic ash cloud return
'Better estimate' of volcanic ash cloud return
Potentially disruptive volcanic ash clouds across Northern Europe occur more frequently than previously thought, according to new research. Scientists investigated known and newly identified records of ash fall deposits over the past few thousand years and concluded the average return rate to be about 44 years. Previous research had put the recurrence at roughly 56 years. The source of the ash is almost always from Iceland. In 2010, the island’s Eyjafjallajökull volcano erupted, throwing some 250 million tonnes of fine particles into the atmosphere that grounded planes across Europe. The eruption of Grímsvötn the following year also disrupted air traffic - albeit on a much smaller scale. But despite these two recent, closely spaced events, the team behind the latest research says the general frequency of volcanic ash clouds over Northern Europe is still generally quite low.

11-4-16 Huge lake discovered 15 kilometres under a volcano
Huge lake discovered 15 kilometres under a volcano
The discovery of a vast reservoir of water – as big as the largest freshwater lakes – could help reveal how eruptions occur, and how continental crust forms. Our planet is blue inside and out. A massive reservoir of water has been discovered deep beneath a volcano in the Andes, and Earth’s interior may be dotted with similar wet pockets lurking below other major volcanoes. The unexpected water, which is mixed with partially melted magma, could help to explain why and how eruptions happen. This water may also be playing a role in the formation of the continental crust we live on, and could be further evidence that our planet has had water circulating in its interior since its formation.

11-1-16 Mount St. Helens is a cold-hearted volcano
Mount St. Helens is a cold-hearted volcano
Scientists are still searching for the source of volcano’s heat. While a volcano called Mt. Adams is fed by an obvious heat source, Mount St. Helens sits above a wedge of rock formed at the edge (or “cold nose”) of the North American tectonic plate. Below most volcanoes, Earth packs some serious deep heat. Mount St. Helens is a standout exception, suggests a new study. Cold rock lurks under this active Washington volcano. Using data from a seismic survey (that included setting off 23 explosions around the volcano), Steven Hansen, a geophysicist at the University of New Mexico, peeked 40 kilometers under Mount St. Helens. That’s where the Juan de Fuca tectonic plate melts as it sinks into the hot mantle beneath the North American plate, fueling an arc of volcanoes that line up like lights on a runway. All except for Mount St. Helens, which stands apart about 50 kilometers to the west. Still, Hansen and colleagues expected to see a heat source under Mount St. Helens, as seen at other volcanoes. Instead, thermal modeling revealed a wedge of a rock called serpentinite that’s too cool to be a volcano’s source of heat, the researchers report November 1 in Nature Communications. “This hasn't really been seen below any active arc volcanoes before,” Hansen says.

Total Page Views

Restless Planet

Sioux Falls Scientists endorse Restless Planet for describing some
of the foundamental forces that have shaped our planet.